Source code for malib.scenarios.scenario

# MIT License

# Copyright (c) 2021 MARL @ SJTU

# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:

# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.

# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.

from abc import ABC, abstractmethod
from types import LambdaType
from typing import Callable, Union, Dict, Any
from copy import deepcopy


DEFAULT_STOPPING_CONDITIONS = {}


[docs]class Scenario(ABC): @abstractmethod def __init__( self, name: str, log_dir: str, env_desc: Dict[str, Any], algorithms: Dict[str, Any], agent_mapping_func: LambdaType, training_config: Dict[str, Any], rollout_config: Dict[str, Any], stopping_conditions: Dict[str, Any], dataset_config: Dict[str, Any], parameter_server_config: Dict[str, Any], ): self.name = name self.log_dir = log_dir self.env_desc = env_desc self.algorithms = algorithms self.agent_mapping_func = agent_mapping_func self.training_config = training_config self.rollout_config = rollout_config self.stopping_conditions = stopping_conditions or DEFAULT_STOPPING_CONDITIONS self.dataset_config = dataset_config or {"table_capacity": 1000} self.parameter_server_config = parameter_server_config or {} self.parameter_server = None self.offline_dataset_server = None
[docs] def copy(self): return deepcopy(self)
[docs] def with_updates(self, **kwargs) -> "Scenario": new_copy = self.copy() for k, v in kwargs.items(): if not hasattr(new_copy, k): raise KeyError(f"{k} is not an attribute of {new_copy.__class__}") setattr(new_copy, k, v) return new_copy